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To date, the optimal cooling device for targeted temperature management (TTM) remains unclear. Water-
circulating cooling blankets are broadly available and quickly applied but reveal inaccuracy during main-
tenance and rewarming period. Recently, esophageal heat exchangers (EHEs) have been shown to be easily
inserted, revealed effective cooling rates (0.26–1.12�C/h), acceptable deviations from target core temper-
ature (<0.5�C), and rewarming rates between 0.2 and 0.4�C/h. The aim of this study was to compare cooling
rates, accuracy during maintenance, and rewarming period as well as side effects of EHEs with water-
circulating cooling blankets in a porcine TTM model. Mean core temperature of domestic pigs (n = 16)
weighing 83.2 – 3.6 kg was decreased to a target core temperature of 33�C by either using EHEs or water-
circulating cooling blankets. After 8 hours of maintenance, rewarming was started at a goal rate of 0.25�C/h.
Mean cooling rates were 1.3 – 0.1�C/h (EHE) and 3.2 – 0.5�C/h (blanket, p < 0.0002). Mean difference to
target core temperature during maintenance ranged between –1�C. Mean rewarming rates were
0.21 – 0.01�C/h (EHE) and 0.22 – 0.02�C/h (blanket, n.s.). There were no differences with regard to side
effects such as brady- or tachycardia, hypo- or hyperkalemia, hypo- or hyperglycemia, hypotension, shiv-
ering, or esophageal tissue damage. Target temperature can be achieved faster by water-circulating cooling
blankets. EHEs and water-circulating cooling blankets were demonstrated to be reliable and safe cooling
devices in a prolonged porcine TTM model with more variability in EHE group.
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Introduction

Sudden cardiac arrest remains the third leading cause
of death in Europe and the industrialized nations (Böt-

tiger et al., 2017). Known as targeted temperature man-
agement (TTM), decrease of the body’s core temperature to
32–36�C for at least 24 hours after successful cardiopul-
monary resuscitation is an established standard in critical
care therapy. In fact, the metabolic rate of oxygen declines
7–10% per degree Celsius drop in temperature. Conse-
quently, reactions associated with reperfusion injury will be
suppressed and both neurologic outcome and survival can
be improved (Polderman and Herold, 2009; Arrich et al.,
2016).

To date, the optimal cooling device for TTM remains
unclear. External cooling devices such as water-circulating
cooling blankets are broadly available and quickly applied.

However, faster cooling rates and higher accuracy of main-
tenance temperature and rewarming rate can be achieved by
use of intravascular cooling devices (IVDs) directly ap-
proaching the body’s core blood. However, IVDs require
expertise and are associated with major side effects includ-
ing, for example, blood-stream infections and venous
thromboembolism (Hoedemaekers et al., 2007; Sonder et al.,
2018; Wang et al., 2018).

At present, esophageal heat exchangers (EHEs) are of
scientific interest. Adjacent to the aorta, vena cava, and heart,
the esophagus is an ideal place to exchange thermal energy to
the body’s core. EHEs have been shown to be easily inserted
and do not damage esophageal tissue (Kulstad et al., 2013;
Schroeder et al., 2017). Clinical trials demonstrated effective
cooling rates (0.26–1.12�C/h), deviations <0.5�C from target
core temperature (Kulstad et al., 2013; Markota et al., 2016;
Schroeder et al., 2017, 2018), and rewarming rates between
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0.2�C/h and 0.4�C/h (Kulstad et al., 2013; Goury et al.,
2017). To set the performance of EHEs in the context of
commonly used cooling methods, the aim of this study was to
compare EHEs with water-circulating cooling blankets in a
porcine TTM model. The main study endpoints were cooling
rates to a target core temperature of 33�C, deviations from
target core temperatures during the 8-hour maintenance
period, and compliance to intended rewarming rates of
0.25�C/h. Esophageal tissue damage or other potential side
effects were also examined in this prolonged experimental
TTM protocol.

Materials and Methods

Animal experiments

The study was permitted by the local animal care committee
and governmental authorities (Landesamt für Natur-, Umwelt-
und Verbraucherschutz NRW; 84-02.04.2014.A157). The
measures were in accordance with the German Federal
Laws for Animal Protection and supervised by a veteri-
narian. The involved employees were qualified to guarantee
adequate animal care and use. The study protocol and the
present article comply with the Animals in Research: Re-
porting of In Vivo Experiments guidelines (Kilkenny et al.,
2010).

Sixteen healthy, domestic adult pigs (Landrace · Pietrain)
weighing 83.2 – 3.6 kg were used in this study. At least 10
days before conducting the experiments, animals were de-
livered to the facility, where they were kept in groups. Am-
bient temperatures were set to 20�C on a 12/12-hour
light/dark cycle, and straw-bedded pens (9.3 m2) were pro-
vided. Animals had ad libitum access to water and were fed
twice a day with adequate nutrition.

Perioperative management and anesthesia

The night before the experiment, animals were fasted and
isolated but maintained visual contact to the remaining
group. After premedication with an intramuscular (i.m.) injec-
tion of azaperone (2 mg/kg; Stresnil; Janssen, Neuss, Germany),
ketamine (20 mg/kg; Ketavet 100; Pfizer, Berlin, Germany),
and atropine (0.02 mg/kg; Braun, Melsungen, Germany), pigs
were taken to the surgery room and received an intravenous
(i.v.) catheter (Vasovet; Braun) in the lateral auricular vein.
Animals were preoxygenated with 100% oxygen using a fa-
cial mask. Placed in a supine position, anesthesia was in-
duced with propofol (2 mg/kg; Fresenius Kabi, Bad
Homburg, Germany), and a 6.0 mm endotracheal tube (Tel-
eflex Medical, Kernen, Germany) was inserted in the trachea
by use of a 27 cm laryngoscope (Karl Storz, Tuttlingen,
Germany). Pigs were ventilated with a tidal volume of
6 mL/kg at 14 breaths/min (Fabius GS; Dräger, Lübeck,
Germany) using a pressure-controlled mode (30% oxygen).
To maintain normocapnia (partial pressure of carbon diox-
ide, 40 – 5 mmHg), ventilation was adapted over time. After
induction of anesthesia, animals received enrofloxacin
(2.5 mg/kg i.m.; Baytril; Bayer, Leverkusen, Germany).

A standard lead II electrocardiogram was applied to
monitor cardiac rhythm (Philips Medizinsysteme, Böblingen,
Germany). To maintain anesthesia, propofol [5–7 mg/
(kg$h)], midazolam [1.2 mg/(kg$h); Rotexmedica, Trittau,
Germany], and fentanyl [12–15 lg/(kg$h); Fentanyl; Ro-

texmedica] were continuously applied. Lactated Ringer’s
solution (Fresenius Kabi) at a rate of 5–10 mL/(kg$h) served
as carrier and covered basic fluid requirement (Pehböck et al.,
2015). In case of indications of reduced depth of anesthesia
(hypertension, increased interdigital reflex, spontaneous
breathing, and tachycardia), an additional bolus of propofol
(0.5–1 mg/kg), midazolam (0.02–0.03 mg/kg), or fentanyl
(1.0–1.25 lg/kg) was administered. In case of shivering, a
bolus of rocuronium (0.5 mg/kg) was intended to be admin-
istered by the study protocol. Glucose (250 mL Glucosteril
5%; Fresenius Kabi) was applied if arterial blood glucose
levels dropped below 3.5 mmol/L. Norepinephrine
[0.1 lg/(kg$min) i.v.; Arterenol; Sanofi-Aventis, Frankfurt
am Main, Germany] was administered if mean arterial blood
pressure decreased to <50 mmHg.

Surgical preparations

During surgical preparation, animals were warmed using
air-circulating blankets (Bairhugger; 3M Deutschland GmbH,
Neuss, Germany) to maintain a physiological core tempera-
ture (38.5–39.5�C). The femoral artery was surgically ex-
posed and a 6 F saline filled catheter (Arterial Leadercath;
Vygon, Ecouen, France) was advanced for continuous blood
pressure measurement (Philips M1097A; Philips Medi-
zinsysteme) and collection of blood samples. The femoral
vein was surgically exposed and a 7 F catheter (Arrow In-
ternational, Reading, PA) was advanced for continuous drug
application. In addition, the internal jugular vein was exposed
and a 5F saline filled catheter (Arrow International) was
placed to measure the jugular blood temperature that highly
reflects core temperature (Polderman and Herold, 2009).
A 12F catheter (Balloon Catheter; Teleflex Medical) was
inserted into the bladder through suprapubic access to drain
urine. Blood gas values were assessed regularly (ABLFlex800;
Radiometer, Willich, Germany).

Cooling systems

After completion of surgical preparations, animals were
randomized to an EHE or blanket group (n = 8). Subse-
quently, the catheter recording the jugular temperature was
connected to a cooling device (HICO Variotherm 555; Hirtz
& Co KG, Cologne, Germany).

In the EHE group, an uninflated manufactured EHE was
blindly inserted into the esophagus. Design, composition, and
safety of the EHE were evaluated in previous studies by our
group (Schroeder et al., 2017, 2018). In brief, the EHE
consisted of medical silicone 600 mm in length with a di-
ameter of 11 mm. Within the tube, a forward and return flow
supplied water from the cooling device and back, respec-
tively. A third tube provided gastric suctioning. In the blanket
group, two water-circulating cooling blankets (Hirtz & Co
KG) were applied below (Ø 120 · 70 cm) and above (Ø
50 · 30 cm) the pig. Both EHEs and water-circulating cooling
blankets were perfused with purified water. Using a closed-
loop feedback system, the cooling device continuously reg-
istered core temperatures and adjusted the temperature of
purified water to the requirements of the study protocol.
Purified water was cooled to a minimum of 3�C and a max-
imum of 41�C, which was considered to be safe previously
(Laptook et al., 2014; Schroeder et al., 2018).
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Experimental study protocol

Ambient temperatures were measured by use of a Pt100
resistance thermometer (e.g., P-M-A-6-100-0-TS-2; Omega
Engineering GmbH, Deckenpfronn, Germany), which was
placed in the surgery room. All temperatures were recorded
continuously (Labview; National Instruments Germany,
Munich, Germany). Hemodynamic and ventilation parame-
ters were recorded in 15-minute intervals.

Before initiation of baseline measurements, air-circulating
blankets were removed. Animals were cooled to a target core
temperature of 33�C as fast as possible, which was main-
tained for 8 hours before initiation of rewarming with an
intended rate of 0.25�C/h. At the end of the experiment, pigs
were killed using an overdose of pentobarbital (80 mg/kg;
Pentobarbital-Natrium; CP Pharma, Burgdorf, Germany)
without regaining consciousness. Esophagi were resected and
divided into four segments: laryngeal, cranial, medial, and
caudal segment.

Histopathology

Esophagi of animals of both groups (n = 8 per group) were
compared with the animals in the blanket group serving as
control. Immediately after harvesting, esophageal tissue
segments were fixed in 4% formalin for 24 hours and sub-
sequently embedded in paraffin. Laryngeal, cranial, medial,
and caudal esophageal segments were cut into slices of 2–
3 lm thickness. Afterward, slices were stained with hema-
toxylin and eosin on a glass slide. One slide of each segment
was examined under light microscopy in 4 · and 20 · mag-
nification (Olympus BX40; Olympus Deutschland GmbH,
Hamburg, Germany). An animal pathologist blinded to the
experimental setting assessed esophageal tissue damage
according to a modified scoring protocol previously de-
scribed (Lequerica et al., 2009; Schroeder et al., 2018). In
brief, a numerical score for the following histological char-
acteristics was assessed: epithelial hyperplasia, epithelial
damage, edema (transmural), hyperemia, reactive submu-
cosal glands, intraepithelial inflammation, and submucosal
inflammation. Each location received a numerical score: 0
points: no specific findings, 1 point: focal tissue alteration,
and 2 points: multifocal tissue alterations. Intraepithelial and
submucosal inflammation received 0 points for no specific
findings, 1 point if <5 mononuclear inflammatory cells per
field were found and 2 points if >5 mononuclear inflamma-
tory cells per field were found. The sum was calculated for
each slice. Sum scores from 0 to 4 represented mild, 5–8
moderate, and >9 severe esophageal tissue damage
(Schroeder et al., 2018).

Statistical analysis

All data were collected using Microsoft Excel 2010
(Microsoft Corporation, Redmond, WA). Calculations, sta-
tistical analysis, and graphing were performed with Graph-
Pad Prism Version 8.0.0 (GraphPad Software, San Diego,
CA). All data were expressed as mean – standard deviation
(SD) if not stated otherwise. Esophageal damage score is
ordinally scaled and was therefore described as median
(lower quartile; upper quartile). Because of the small sample
size, group differences were tested by the nonparametric
Mann–Whitney U-test. Repeatedly measured variables were

tested using two-way analysis of variance and post hoc
Holm–Šı́dák tests. A value of p < 0.05 was considered sta-
tistically significant.

Results

Body weight and temperature profiles

Mean body weights were 82.2 – 3.7 kg (EHE) and 84.4 –
3.8 kg (blanket, n.s.). Mean ambient temperatures during
cooling period were 21.8 – 0.6�C (EHE) and 22.1 – 0.9�C
(blanket, n.s.). Mean ambient temperatures during mainte-
nance were 21.7 – 0.8�C (EHE) and 21.8 – 0.7�C (blanket,
n.s.). Mean ambient temperatures during rewarming period
were 21.7 – 0.6�C (EHE) and 22.1 – 0.7�C (blanket, n.s.).
Mean entire time of placement of the cooling devices were
1130 – 36 minutes (EHE) and 1181 – 17.6 minutes (blanket,
p = 0.0002). At initiation of cooling, mean core temperatures
were 38.4 – 0.2�C (EHE) and 38.3 – 0.2�C (blanket, n.s.).
Mean cooling rates were 1.3 – 0.1�C/h (EHE) and 3.2 –
0.5�C/h (blanket, p < 0.0002; Fig. 1). Mean difference to
target core temperatures during maintenance ranged be-
tween –1�C (Polderman and Herold, 2009) (Fig. 2). Mean
rewarming rates were 0.21 – 0.01�C/h (EHE) and 0.22 –
0.02�C/h (blanket, n.s.; Fig. 1).

Hemodynamic and electrolytes

Mean heart rate and mean arterial blood pressure were not
significantly different between the groups during the entire
TTM protocol (Supplementary Figs. S1 and S2). Mean – SD
throughout the whole experimentation for sodium were
141.1 – 1.9 mmol/L (EHE) and 140.3 – 1.6 mmol/L (blanket,
n.s.; Supplementary Fig. S3). Chloride levels were 112.3 –
4.9 mmol/L (EHE) and 109.9 – 4.3 mmol/L (blanket, n.s.;
Supplementary Fig. S4). Potassium levels were 4.3 –
0.2 mmol/L (EHE) and 4.3 – 0.2 mmol/L (blanket, n.s.; Sup-
plementary Fig. S5). Calcium levels were 1.43 – 0.05 mmol/L
(EHE) and 1.41 – 0.03 mmol/L (blanket, n.s.; Supplementary
Fig. S6). pHs were 7.40 – 0.04 (EHE) and 7.41 – 0.03 (blanket,
n.s.; Supplementary Fig. S7). Base excesses were 0.45 –
2.49 mmol/L (EHE) and 1.7 – 2.06 mmol/L (blanket, n.s.;
Supplementary Fig. S8). Hematocrit levels were 23.1 – 0.9%
(EHE) and 23.2 – 0.8% (blanket, n.s.; Supplementary Fig. S9).
Blood glucose levels were 4.0 – 0.1 mmol/L (EHE) and
4.2 – 0.2 mmol/L (blanket, n.s.; Supplementary Fig. S10).

Side effects

Shivering was not detected in any group during the entire
TTM protocol. Thus, muscle relaxation using rocuronium
could be avoided in all animals. There were no clinically
relevant differences in brady- or tachycardia, hypo- or
hyperkalemia, hypo- or hyperglycemia, hypotension, or
overcooling.

Histopathology

We did not detect relevant esophageal tissue damage
(Fig. 3). Median damage scores were 6 [3; 6] (EHE) and 5
[3.25; 5.75] (blanket, n.s.) for laryngeal esophageal seg-
ments, 3 [2; 3] (EHE) and 4 [3; 5] (blanket, n.s.) for upper
esophageal segments, 2.5 [1.25; 3.75] (EHE) and 3 [1.25; 4]
(blanket, n.s.) for medial esophageal segments, and 2 [1; 3]
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(EHE) and 1 [1; 2.5] (blanket, n.s.) for lower esophageal
segments. Occasional mild mononuclear acute inflamma-
tory transepithelial infiltrates were found in laryngeal
esophageal segments in both groups but not in other tissue
segments.

Discussion

In this prolonged experimental TTM study protocol use of
water-circulating cooling blankets resulted in faster cooling
rates than EHEs. Both devices met the prerequisites during
maintenance and rewarming period but with more variability
in EHE group. No clinically relevant esophageal tissue
damage or other relevant side effects were observed.
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FIG. 1. Temperature profile. Median – IQR of core temperature in �C during the entire targeted temperature management
protocol. EHEs, esophageal heat exchangers; IQR, interquartile range.

FIG. 2. Variability of core temperature during mainte-
nance. Core temperature in �C during maintenance for each
individual randomized to EHE or blanket group. The gray
area indicates the target range from 32�C to 33.9�C (Polderman
and Herold, 2009).
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FIG. 3. Esophageal tissue damage score. Adapted esoph-
ageal tissue damage score for each individual randomized to
EHE or blanket group.
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Despite enormous scientific efforts, the most advantageous
cooling method and the optimal time to reach the target core
temperature after cardiac arrest still remains unclear (Nolan
et al., 2015; Kim et al., 2018). There is scientific evidence
that rapid cooling after cardiac arrest may be favorable to
reduce cerebral damage (Bernard et al., 2002; Polderman and
Herold, 2009; Che et al., 2011). On the contrary, faster de-
cline of the core temperature predicts poor neurological
outcome (Haugk et al., 2011). Thus, evaluation of cooling
rates is of major importance in choice of the adequate cooling
method and was the focus in this study.

Interestingly, surface cooling rates in this study exceeded
surface cooling rates of human studies by three times (Hoe-
demaekers et al., 2007). However, narcotized swine suffer
from undesired surface cooling of *4.8�C/h (Dingley et al.,
2018). In addition, cooling rates of *8–12�C/h are also re-
ported by other groups evaluating cooling blankets in pigs
(Haugk et al., 2010; Weihs et al., 2011). Haugk et al. (2010)
even reported a faster cooling rate of 8�C/h by surface
cooling compared with endovascular cooling in pigs. We
conclude that multiple factors may influence cooling rates by
surface cooling in pigs: (1) weight and age (Haugk et al., 2010),
(2) structural differences to the human skin such as bristles,
higher amount of subcutaneous fat, and less vasculature (El-
Kattan et al., 2000), (3) higher resting metabolism (Pehböck
et al., 2014), and (4) a relatively large body surface of adult
pigs (Kelley et al., 1973). Although our model with body
weights corresponding to adults (>80 kg) is as close to human
conditions as possible, porcine models may be overly sensitive
for surface cooling, which significantly affected our results.

In the present and previous experimental studies, EHE
reached cooling rates between 1.2�C/h and 2.8�C/h depend-
ing on the weight of the pigs (Kulstad et al., 2013; Schroeder
et al., 2017, 2018). Finally, extrapolation to clinical condi-
tions may reveal cooling rates considered to be effective for
neuroprotection (Polderman and Herold, 2009). However,
clinical data containing four patients after return of sponta-
neous circulation and one study involving 17 comatose sur-
vivors after out of hospital cardiac arrest point toward lower
cooling rates (0.26–0.42�C/h) achievable by EHE compared
with water-circulating cooling blankets (Moulaert et al.,
2009; Goury et al., 2017; Hegazy et al., 2017; Kim et al.,
2018). Thus, further clinical studies are needed to demon-
strate benefits of EHE in patients suffering from cardiac ar-
rest and other therapeutic indications for TTM.

Our aim was to simulate a TTM protocol as close as pos-
sible to critical care conditions. Thus, after reaching the target
core temperature, we maintained this temperature for 8 hours
and simulated rewarming at a rate of 0.25�C/h as is actually
recommended. Although the rewarming rate was comparable
in both groups, higher temperature fluctuations during
maintenance (>0.5�C) were demonstrated in the EHE group,
which could lead to long-term side effects such as pneumonia
and wound infections. Interestingly, EHEs were comparably
effective during maintenance in other studies (Kulstad et al.,
2012, 2013; Naiman et al., 2016; Hegazy et al., 2017;
Schroeder et al., 2017, 2018; Khan et al., 2018). As discussed
above, the porcine model with its characteristics may have
also influenced maintenance period, which could explain
deviations from target core temperature in this study.

One major concern using the EHE may be possible
esophageal tissue damage during long-term exposure to cold

or heat. The EHE remained in place for at least 18 hours in
this ‘‘prolonged’’ study simulating the situation in the critical
care unit. Even in this prolonged setting we did not detect
clinically relevant esophageal tissue damage, which is in ac-
cordance to previous studies (Kulstad et al., 2013; Schroeder
et al., 2017). Presumably, food-related mild mononuclear
acute transepithelial invasion of inflammatory cells leads to
higher esophageal tissue damage in laryngeal segments, which
is reported to be a physiological process (Desai et al., 2005)
and in line with other studies investigating EHE in porcine
models (Schroeder et al., 2017, 2018). Mild laryngeal tissue
damage is also conceivable during endotracheal intubation in
80 kg pigs demonstrating prominent throat tissue, which was,
however, uncomplicated in this study. Furthermore, we did not
observe any other unwanted side effects such as brady- or
tachycardia, hypo- or hyperkalemia, hypo- or hyperglycemia,
hypotension, hypoxemia, or shivering (Buse et al., 2017).

Several limitations have to be considered. First, this study
was conducted in the absence of cardiac arrest. The core
temperature is mainly dependent on neurologic damage
(Perman et al., 2015) and impaired hemodynamics. Both
were at a physiological level in our study, which may have
influenced performance of cooling and rewarming. Finally,
there is a large body of evidence that general anesthetics such
as fentanyl, propofol, and midazolam affect vegetative ther-
moregulatory control and decrease core temperature (Sessler,
2008). To avoid inhomogeneous baseline temperatures, we
reduced perioperative hypothermia during surgical prepara-
tion by covering and actively rewarming the pigs with air-
circulating blankets. Thereby, we were able to confirm clin-
ical data in a controlled experimental environment.

Conclusions

Target temperature can be achieved faster by water-
circulating cooling blankets. EHEs and water-circulating
cooling blankets were demonstrated to be reliable and safe
cooling devices in a prolonged porcine TTM model with
more variability in the EHE group. EHE may usefully sup-
plement cooling methods for TTM.
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